User’s Guide for

CaesarJ Development Tool

Software Technology Group
Version 0.4.0

Jochen Unger Daniel Zwicker

October 20, 2004

2 CONTENTS
Contents

1 Introduction 3

1.1 What is CAESARJ? 3

1.2 About the CAESARJ Eclipse Plugin 3

2 CAESARJ Development Tool Installation 6

2.1 Clean Installation 6

2.1.1 Using A Proxy Server. 6

2.1.2 Installing via Update Manager 6

2.2 Updating an Existing Installation 8

2.3 Testing the Installation 8

3 Features 9

3.1 Opening the CAESARJ-perspective 9

3.2 Creating a new CAESARJ project 10

3.3 Adding a Class to Your Project 10

3.4 Adding a New Aspect to Your Project 13

3.5 Running an CAESARJ Program 14

3.6 Debugging CAESARJ Programs 15

4 Properties and Shortcuts 17

5 Using the Visualisers and Views 18

5.1 Outline view 18

5.2 Hierarchy View 18

Common Problems and Limitations

1 Introduction

This documentation describes how to use the CAESARJ-Eclipse Plugin.

1.1 What is CAESARJ?

CAESARJ is a new aspect-oriented programming language, which addresses the
most important goals of the software design: modularity, reuse, flexibility and
correctness. It is easy to learn because it fully integrates with the Java pro-
gramming language. All new language extensions are compiled to efficient Java
byte-code.

The CAESARJ highlights are:

e Virtual Classes

Mixin Composition

Collaboration Interfaces

Bindings

Aspectual Polymorphism
e Dynamic Deployment

For more detailed information please visit http://caesarj.org/.

1.2 About the CaesarJ Eclipse Plugin

CAESARJ extends the Java language with new the syntax and semantics. In or-
der to provide a good IDE support for the CAESARJ programming language,
we have extended the Eclipse’s JAVA Development Tool (JDT) plugin with
Caesar specific features (For details about the Eclipse platform, please visit
http://www.eclipse.org/).

Some of the CAESARJ plugin highlights are:

e Editor support with keyword highlighting. (Figure 1)

e Outline view showing structural members and crosscutting relationships.
Also from an advice declaration to the places it advises. (Figure 2)

o New CAESARJ-project wizard. This wizard helps you to start a new CAESARJ-
project. (Figure 3)

http://caesarj.org/
http://www.eclipse.org/

1 INTRODUCTION

e CAESARJ hierarchy view. This view shows the multiple inheritance and
nested class relations of an CAESARJ top level class. (Figure 4)

e Debugging support. (Figure 5)

CHPricingDeployment java £ [m}

package stockpricing: ~
P import java.util.HashMap:[]

public deployed oclass)PricingDeployment
{ \-——-—-/

static Map pricingMapping = new HashMapi):

static
{
try
i
// User <—> Pricing Mapping
pricingMapping.put ("Klaus", new PerRequestDiscountPricing Impl(mull));
pricingMapping. put ("Egon”, new PeritockQuoteDiscouncPricing Impl(null)):
pricingMapping.put ("Mira”, new PerRequestRegularPricing Implinull)];
¥
catch (Throwable t}
il
t.printStackTrace() :
H
)

voidg@around{client ¢ :

(execution(void Client.run(String [])) &5 this(c))
{

eplog ipricingllapping.get (c.getNans{]]

{

proceed(c;

¥

3 v

< d

Figure 1: Codehighlighting in CAESARJ Development Tool

5= outline 52 Caesar] Hierarchy | =0
2 stackpricing

Imports
) PerRequestBinding
@8 ClientCustomer
< _wrappee ! Client
@ ClientCustomer()
inikfClient) : void
named) : Skring
RequestItem
& _wrappee : StockInfoRequest
@ RequestItem{)
@ inik{StockInfoRequest) : void
@ price() : float
------ & _customers : WeakHashMap
------ & _jkems : WeakHashMap
------ @ PerRequestBinding(}
------ @ clientCustomer{Client) : ClientCustomer
------ @ requestItem(StockInfoRequest) : Request
= after
El@ advises method call sikes
o method-call{stockinformationbro

Figure 2: Outline view with advice relations

For detailed description please see Section 3.

1.2 About the CAESARJ Eclipse Plugin

£~ New Project x|
Select a wizard

Create a Caesar Project

e >

r—

Wizards:

(A Java Project
@ Plug-in Praject
= Caesar

Caesar Project

E& Java
[#-(= Plug-in Development
(= Simple

= Bach: I Mext = I Finiishi | Cancel |

Figure 3: New CAESARJ-project wizard

Bl “= Conkains {Sub)
NNy
© E-09 UE(E &M
-8 E
2] UE(E &)

—Mixin View
keskia
keskfiTia

Figure 4: CAESARJ hierarchy view

6 2 CAESARJ DEVELOPMENT TOOL INSTALLATION

£ Debug - MAIN.java - Eclipse Platform O 5[
Elle Edit Mavigate Search Project Run Window Help

Fi-Halfhfh|5-0-%- &5 [0 G- - 5| #spebug

5 Debug 2 Ok |) = | ¢ w 7 B |/ t9=variables 52 Breakpolnts| i<k 5 » =0

(=31 MAIN [Java application]
E| myPackage,MAIM at localhosk: 6340
= o Thread [main] (Suspended {breakpaint at line 6 in MAINY)
- = MAIN.main(strina[T) line: &
bepil Cilizsdkl,4,2_0S\bintjavaw,exe (19,10,2004 20:22:02)

=
il o
%HE”UWUFMJEVE ‘%Wur\d‘iava mpri:ing%plwmsnt.]ava | O EE Outline 2 =0

package myPackage;: B

wpublic class MAIN {

public static void main(3tring[] args) {
HelloWorld test = new HelloWorld():
test.sayHelloTest ("THello World™):

}

H

4 o

] Console B2 . Tasks | al & | =0 -

MAIN [Java Application] C:hjzsdkl 4.2_0S\bintjavaw.exe {19,10.2004 20:22:02)

Bl |0

I

I ‘ Writable | Srart Insert | 61

Figure 5: Debugging an CAESARJ-project

2 CagssarJ Development Tool Installation

The following two sections describe the installation of the CAESARJ eclipse plu-
gin. Two scenarios are possible: clean installation and updating an existing
installation.

2.1 Clean Installation

The CAESARJ Development Tool is installed by using the Eclipse Update Man-
ager. We recommend you to use Eclipse 3.x.

2.1.1 Using A Proxy Server

If you need to use a proxy server to access the internet, the first thing to do is to
configure the proxy preference details, so that the update manager can contact
the CAESARJ Development Tool update site. From the menu select

’Preferences‘ and then the |Install/Update| tab. Please enter your proxy

server details as shown in figure 6.

2.1.2 Installing via Update Manager

Create an update site bookmark for the CAESARJ Development Tool update site,
and start the install procedure. From the help menu, select | Software Updates ‘

— |Find and Install|. Then select |Search for new features to install | and

2.1 Clean Installation 7

= Preferences =X
+ Workbench Install/Update
+ Ant
= Aspect) Maximum number of 'History' configurations: | 100
Compiler W Check digital signatures of downloaded archives
Build Order
+- Help
Valid updates
+ Install/Update .[J .
o Java " equivalent (1.0.1 -> 1.0.2 - only service increments)
+ Plug-in Development " compatible (1.0.% -> 1.1.0 - service and minor increments)
+ Run/Debug
+ Team Undate Pol
Visualiser pdate Policy
Folicy URL: |

Proxy settings
¥ Enable HTTP proxy connection
HTTP proxy host address: ‘yourproxy.yourco.com

HTTP proxy host port: ‘ 30

Restore Defaults ‘ Apply ‘

Import... | Export... ‘ oK Cancel ‘

Figure 6: Setting up your proxy server

click . Afterwards click ’ Add Update Site ‘ and enter the name ” CAESARJ up-
date site” and the following URL:

http://cage.st.informatik.tu-darmstadt.de/caesar/updatesite/0.4.0/

Click . Fully expand the appearing CAESARJ Development Tool update

site node and select . Pick . Select lorg.caesarj.feature‘ as
shown in figure 7 and click .

u Install

Search Results

Select Features toinstall from the search result list. |\';E i

Select the Features o install:

Feature Wersion Provider ‘ Select Al
@Urg.caesarjf&ature 0.3.1 TIJ-Darmskadt

Deselect Al

i

1 of 1 selecked.
I Filter features included in other features on the list

< Back | Mesck > | | Cancel ‘

Figure 7: Selection of the CAESARJ-plugin

Accept the |license agreement | and proceed to the installation.

http://cage.st.informatik.tu-darmstadt.de/caesar/updatesite/0.4.0/

8 2 CAESARJ DEVELOPMENT TOOL INSTALLATION

2.2 Updating an Existing Installation

Proceed as as in section clean install, except that in this case the CAESARJ Devel-
opment Tool update site bookmark is already existing. You only need to expand
the bookmark node and go on. If the version you have installed is the same as the
version on the update site (or even more recent), then you will not be confronted
by any installing options.

2.3 Testing the Installation
Restart the Eclipse workbench. Try to open a new perspective by clicking

Window | — ’ Open Perspective ‘ Pickand select ’ CaesarJ Perspective

in the upcoming list. When the perspective opens successfully, the installation
of your CAESARJ Development Tool works fine.

3 Features

The following section describes the additional features of the CAESARJ Develop-
ment Tool Plugin.

3.1 Opening the CaesarJ-perspective

First of all you need to open the CAESARJ-perspective. It includes some new
features like the CAESARJ-editor, the new outline view or the CAESARJ-hierarchy
view.

You can open this perspective by selecting: | Window | — ’Open Perspective

— |other | — ’CaesarJ perspective ‘
If this is the first time you are using the plugin, you will see a dialog popup as
shown in figure 8.

£~ Caesar] Configuration Wizard 5'

Caesar Preferences

Tao costomize vour Caesar] Plugin choose vour preferences

Caesar] Preference
[Default setting: annotation while kyping
¥ Auto annotation switch while changing editors

I¥ Make the Caesar] editor the default java - editar

[Open this dialog nest time you open the Caesar] perspective?

Firish I Cancel

Figure 8: The CAESARJ Preferences

This dialog configures some Eclipse settings, which will make your life much
easier when working with CAESARJ-projects. Leave everything as selected and

click .

10 3 FEATURES

3.2 Creating a new CAESARJ project

From the File menu select | New | — | Project | Pick ’Caesar Project | in the

list and select as shown in figure 9.

£ New Project x|

Select a wizard

Create a Caesar Project

Wizards:

o[Java Project
o Plug-in Project
B[Caesar

: Caesar Project
-2 S
-2 Java

B Plug-in Development
(= Simple

= Back I MNext = I Finisti | Cancel |

Figure 9: Coosing the New Project Wizard

If the item doesn’t appear in the list, this is probably because you use the plu-
gin for the first time. Select and then | Caesar | and ‘Caesar Project ‘

The wizard opens up. Here specify a name for your project as shown in figure
10.

This wizard has identical behavior to the new Java project wizard (with the
exception that it creates a project with the Caesar nature).

When you click , your project will be created.

3.3 Adding a Class to Your Project

First you have to create a package for your class files. Select the project you
created in the section 3.2 in the package explorer. Right click on it and select

’New‘ — ’Other‘ from the context menu. You have to look for in

the subsection as you can see in figure 11.
Name the package ” myPackage” then click | Finish |

Right-click on the package you have just created and select ’New‘ — ’Class‘
from the context menu. Name the class ” HelloWorld” and activate the option

3.3 Adding a Class to Your Project

£~ MNew Project

Figure 10: The New Project Wizard

Select a wizard

Create a Java package

1) Extension Poink Schema
& Interface
(3% Java Project
ﬁ Flug-in Praject
[Caesar
Bl S
E-= Java
& Class
¥ Interface
ﬁ Java Project

g% Source Folder
+ Java Run/Debug
[JUnit

Figure 11: Creating a package

11

12 3 FEATURES

to let Eclipse create a new main method for you. Click |Finish] Edit the text
in the editor so that it looks like this:

Listing 1: HelloWorld.java

1 package myPackage;
s public cclass HelloWorld {
+ private static HelloWorld instance = new HelloWorld();

s public void sayHelloTest(String message) {
7 System.out. println (message);

-
.

Save the file.

Notice that unlike in a Java project, there was no eager parsing of the buffer while

you were typing. Also the outline view didn’t update.! Your Eclipse workbench
should be looking somehow like in figure 12.

£ Caesar] Development Tool - World.java - Eclipse Platform

=1of x|
Ele Edit Source Refactor Havigate Search Project Run MWindow Help
leﬁ' J’p’nlﬁ'ﬁ'%'l@ﬂ’?@'Jg‘Q’"J“ (=T ks ﬁ%caesarJDeve.‘.
[eackags Explorar W = O)(Y@matijava | FhHeloWorkdjava | () werkd java 2 0|8z outine 22 Caesardtie...| = O
s | B % - g package myPackage; = == ;ny'Pactkage
—JW = Imports
E‘ = public deployed cclass World { By world
¢ B8 myPackage o World)
[3] Helloworld.java :
pointcut p(HelloWorld o) : execution(void HelloWo 58 3“25’ ’ o
= arvises methads
B JRE System Library [j2sdk1.4.2_05] after (HelloWorld d) : pid) y (r;“u_:v T;)‘bwm'd'sa"'
| aspectirt.jar - C:\Programmeleclipse3. Dworkspac 7 { = plReloior
| caesar-runtime.jar - C\Programmeleclipse3.0\wor System.out.println{"After Hello World"):
[:'l caesar-compiler.jar - Ci\Programmeleclipse. 0iwo 3
L0 Test '
4| | _’l—l
Tasks | Search | Declaration | &l consale 53 R ‘ &l & | = 32-=08
<terminated:> MAIN [Java Application] C:Yj2sdkl, 4.2_0S\bintjavaw.exe {19, 10,2004 20:38:36)
Hello World =]
After Hello World
of
4 | 0 e Al i |
|| HeloWorld |

Figure 12: Workbench with HelloWorld.java

!The CAESARJ outline bar requires meta information from the compiler to display cross-
cutting relationships.

3.4 Adding a New Aspect to Your Project 13

3.4 Adding a New Aspect to Your Project

Create a new Class and name it ” World”. Edit the buffer so it looks like listing
2 and then save it:

Listing 2: An CAESARJ-cclass including an aspect

1 package myPackage;
2

s public deployed cclass World {
s pointcut p(HelloWorld c) : execution(void HelloWorld.sayHelloTest(String)) €€ this(c);

7 after (HelloWorld d) : p(d)

o {

s System.out. println (”After Hello World”);
10 }

11 }

Furthermore you will need a ”’Main-Class”’ to run the project. Just create
one like this:

Listing 3: An CAESARJ-java-class including an main method

1 package myPackage;

s public class MAIN {

+ public static void main(String[] args) {
s HelloWorld test = new HelloWorld();

¢ test.sayHelloTest(”Hello World”);

!

.

Make a clean Build of the project, and the outline view populates like in figure
13. Expand the ”after()” node.

5= Qutling 52 . Cassard Hierarchy| =0

- F} myPackage

Inpirks

0 world

...... @ World()

B around

| B8l advises methods

fw=3 HelloWorld.sayHella”
e F plHelloWarld)

=

Figure 13: Outline view with content

You can see that this advice is affecting the ”HelloWorld.sayHello()”
method. Clicking on the ”HelloWorld.sayHello()” node in the outline takes

14 3 FEATURES

you to the declaration of ” HelloWorld.sayHello()”.
Notice the advice annotation in the editor buffer (highlighted) and that the ”say-

Hello” method in the outline view shows that it is advised by the World aspect.
It should look like in figure 14.

[1] world java | O|| 5= outline 22 . Cassar] Herarchy, — O

package myPackage: ;I E} myPackage
‘Dan\EIHEIIUWUrId,l’myPackagafHEllUWDrld.java| Imporks

public celass HelloWorld { Hellotiorld
private static HelloWorld instance = new HelloWorld(): ¢

o * instance ! Helowiorld

@ Helloworld()

- @ sayHelloTest{String) : void

Bl method advised by
Lo d= around:Registry

public void sayHelloTest (3tring message) | =
S¥Stem.out.println(message)
t

Figure 14: Advice relationship

Selecting the ” World.after()” node in the outline view takes you back to the
advice declaration. Right-clicking on the advice annotation brings up a context
menu that also allows you to navigate to the advice.

3.5 Running an CAesarJ Program
Select your CAESARJ project in the Package Explorer. Drop-down the

icon on the toolbar and click

Select ’Java Application‘ in the left-hand tab and click . Name this

configuration ”HelloWorld” and then click to find the main class.
Select ”HelloWorld” as described in figure 15.

=
Create, manage, and run configurations

Create a configuration that will launch a Java virtual machine.

Configurations: Name: [AT
----- 0] Java Applet

=31 Java Application —
7 © main | 69= arguments | =i 1RE | % Clssspath | B source | 8 Environment | 4]
Ju unit Project:

----- 3 Jnit Plugen Test [Hellowiord Browise...

@ Run-time Workbench

Main class

| myPackage. MAIN search..,

[~ Include external jars when searching For a main class

™ Include inberit=d mains when searching for a main class

™ stgp in main

Mew Delete Apply Rewert

Figure 15: Running a CAESARJ program

3.6 Debugging CAESARJ Programs 15

Click | Apply | and then .

You should see the output of the ” HelloWorld” class and the ” World” aspect
in the console as shown in figure 16.

4= Run B
Create, manage, and run configurations -
Create a configuration that will launch a Java virtual machine. (D
Configurations: s | MATN
] Java Applet
=-[31 Java Applicatian _
71 2 @ main | 9= arguments | =i JRE | 4 Classpath | B source | 7% Environmen o] ol
Ju Junit Project:
----- 37 2unit Plugin Test [Helorarld Browse...
4 Run-time Workbench
Main class
| myPackage. MAIN Search..,
™ Include external jars when searching For a main class
™ Include inherited mains when searching For a main class
I stop in main
New Delete Apply Revert
Run Close

Figure 16: Programs output

To run this configuration again, just click on the icon placed on the
toolbar.

3.6 Debugging CAesArJ Programs

You can debug the standard JAVA part of CAESARJ programs by using the
normal Java debugger. To set a breakpoint, right-click in the gutter of the editor
and choose ’Toggle Breakpoint ‘(See figure 17). Another possibility is a simple
double-click on the gutter. If it is not possible to set breakpoints the double-click
will not have any affects.

After setting one or more breakpoints, you launch the Eclipse debugger in
the normal way by clicking on the debug icon in the toolbar. The debugger
perspective looks like figure 18.

You can use the Java Debug step filters (’ Window‘ — ’Preferences‘ —
Java| — ’Debug‘ — ’Step Filtering ‘) to make this process a little easier.
Note: A current limitation is that you cannot set breakpoints in cclasses.

16 3 FEATURES

CF)world. java 8
* TODO To change the template for Chis generated file go to ;I
* Window - Freferences - Java - Code Style - Code Templates

i
package myPackage:

o
* @author
* TODO To change the template for thiz gensrated type comment go to Window -
* Preferences - Java - Code Style - Code Templates
*

“public class HelloWorld {

- public static void main(3tring[] args) {
e tosomoccs ot pew HelloWorld():
Toggle Brealpoint o),
Disable Breakpaint 4
Breakpoink Properties. .
G0 ta Annokation Ctrb+l tring arg) {
arg)
add Bookmark. .. (=ra)
tdd Task... =
Disable QuickDiff CtrkShift+0 E
Set QUIKDIFF Ref ’ =
T St QDI Reference R bl | 2@ -0
< Foldng » fsdit.4.2_05\bintjavaw exe (19.09,2004 16:37:41)

HeT1o =l

Figure 17: Toggling a debugging breakpoint

se Platform 18l x|

File Edit Mavigate Search Project Run Window Help
Iti-Gle | % 3s-0-%-|® 5 | G- - 5 | %5-0ehug ?

H5Debug 22 TS |2 =58 v = O evariasles 5 . Breakpoints Tk O v =0
MAIN [Java Application]
= @ myPackage.MAIN at localhost: 6340
=g Thread [main] {Suspended {breakpoint at fine & in MAIN)
i = MAIN.main(String[]) line: &
Lopt Cilizsdki.4.2_0S\binkjavaw.exe (19.10.2004 20:22:02) ==
=
=08

t.£|Hel\o\n\dorhi]av'a ‘cﬂWor\d‘]ava mwlclngmployment.]ava | B[5% outline &2

package myPackage:

wpublic class MAIN {

= public static void main(String[] args) {
HelloWorld test = new HelloWorldi):
test.sayHelloTest ("Hello TWorld"):

¥

il _I_I
& consele 52 Tasks |
MAIN [Java Application] Ciij2sdkl 4.2_0Sibintjavaw.exe (19.10.2004 20:22:02)

Rl Z |22 -=0

|

4 o

I ‘Writah\e Smart Insert | &1

Figure 18: Debugger perspective

17

4 Properties and Shortcuts

If you have opened the Caesar Perspective, there are some configurations left.

Open | Window | — ’Customise Perspective ‘ Check the check box

as shown in figure 19.

g
Shorbeuts | Commands |
Select the shartcuts that you want to see added as cascade items ta the Fallowing submenus, The selections made will only
affect the current persp ebug).
Submenus: Shorkcuts:
[raze | [shorteut | Description

Sharkcut Categoriss: %Caesar Project Create a Caesar Project

[sava Run/Debug
[aunit
[Plug-in Development
-] Gimple

4 | |

coca_|

Figure 19: Selection the CAESARJ perspective

If this is done, two new Buttons will appear in the tool bar like in figure 20.

[ri-Le [Rhlls-0-%- |B#e- &5 [0 -

Figure 20: CAESARJ tool bar shortcuts

Figure 21 shows the CAESARJ-Configuration-Wizard, which will be displayed
by pressing the @—Button.

The Button toggles the ”Annotation-While-Typing” option on or off.
Even for the Java-Editor.
A main feature of the CAESARJ Development Tool is the automatic annotation
toggling while switching between the CAESARJ- and the JAVA-editor. This is a
useful feature, because the CAESARJ Development Tooldoes not support live an-
notation yet. In this way, CAESARJ syntax are not marked as wrong expressions.

18 5 USING THE VISUALISERS AND VIEWS

4= Caesar] Configuration Yizard x|

Caesar Preferences

To costomize your Caesar] Plugin choose your preferences

Caesar] Preference
[Default setting: annokation while Eyping

Jv &uko annotation switch while changing editors
[Make the Caesar] editor the default java - editor

[v¥ Open this dialog next time vou open the Caesar] perspective?

Fimish I Cancel |

Figure 21: CAESARJ-Configuration-Wizard

5 Using the Visualisers and Views

If this is the first time you use the CAESARJ Development Tool, switch to
the CAESARJ perspective by selecting | Window | — ’Open Perspective| —

[Other|. Pick ’ CaesarJDT Perspective‘ (see figure 22) in the list.

This perspective extends the Java perspective. Especially a new view is avail-
able. The ’CAESARJ Hierarchy View | See section 5.2 for detailed informa-
tion.

You can switch between the Java and Caesar Visualization perspectives using the
perspective icons located in the top right of the menu bar.

5.1 Outline view

The outline view is showing structural members and crosscutting relationships. It
extends the Java outline view by additional information (e.g advice declarations
to the places it advises). A sample outline view bar is shown in figure 23.

5.2 Hierarchy View

A CAESARJ hierarchy view displays the hierarchical relationships of CAESARJ cclass-
es. That means, that for each cclass their super-classes are displayed under the

node (see figure 24). If the class contains nested classes ((Contains]|

node) there are two displaying modes available for them:

5.2 Hierarchy View

ﬂ
FfCasarIDT Perspective |
C'\-'S Repasitary Exploring
3@3‘ Dehug
%}J Java
5,’ Jawa Browsing

3ava Tvpe Hierarchy
=J=Plug-in Development
[ﬁ_j Resource (default)

§DTeam Synchranizing

K I Cancel |

Figure 22: Perspective selection

5= outline 52 . Caesar] Hierarchy =8
2 stackpricing
Irnports
=¥ PerRequestBinding
ClientCustarner
-~ ¢ _wrappee ; Client
- @ ClientCuskarner()
- @ inik{Client) : void
- namei) : Skring
RequestItern
- & _wrappee ! StockInfoRequest
- @ RequestItem{)
- @ init{StockInfoRequest) : void
@ price() : float
------ & _customers ; WeakHashMap
------ & _jtems : WeakHashMap
------ @ PerRequestBindingl)
------ @ clientCustomer{Client) : ClientCustomer
------ @ requestltem(StockInfoRequest) : Requesk
=@ after
E-§3 advises method call sites
=» method-call{stockinformationbro

Figure 23: Outline View

20 6 COMMON PROBLEMS AND LIMITATIONS

Super: For each nested class their super classes are displayed.

Sub: For each nested class their sub classes are displayed. If a sub class has
two super classes the linearized inheritance relation is displayed in brackets
after the class name.

£ Caesar] Hierarchy X

E| “= Contains {5ub)

S @
Lm0 UE(E&N)
=& E
B0 UE(E &N
— Mixin View
keskia
keskiCG

Figure 24: CAESARJ hierarchy view

The modes can be switched by pressing the control button in the upper-right
of the view. The second part of the view, named ”Mixin view”, shows the mixin
composition of the currently selected (nested-) cclass.

Note: Since this view needs meta information from the compiler, the view re-
freshes when a project is (re-)built successfully.

6 Common Problems and Limitations

The CAESARJ Development Tool is still under development. That is why there
are some restrictions in this release. Some of these are listed below:

e This release does not support live annotation while typing. To get this

21

available, an CAESARJ AST? would have to be rebuilt while changing the
code in the editor. This is not implemented yet.

e Showing the class hierarchy of an cclass marked in the editor by pressing
[F4]. Only the hierarchy view of an entire source file and its included classes
is supported.

e In-time refreshing of the outline bar and of the hierarchy view is not sup-
ported yet. In this release both of the views need meta information from
the compiler. That is why they only refresh after a (re-) build of the entire
project.

e [t is not possible to declare breakpoints in cclass-es, when debugging an
CAESARJ application.

2 Abstract Syntax Tree

	Introduction
	What is CAESARJ?
	About the CAESARJ Eclipse Plugin

	CAESARJ Development Tool Installation
	Clean Installation
	Using A Proxy Server
	Installing via Update Manager

	Updating an Existing Installation
	Testing the Installation

	Features
	Opening the CAESARJ-perspective
	Creating a new CAESARJ project
	Adding a Class to Your Project
	Adding a New Aspect to Your Project
	Running an CAESARJ Program
	Debugging CAESARJ Programs

	Properties and Shortcuts
	Using the Visualisers and Views
	Outline view
	Hierarchy View

	Common Problems and Limitations

