
Dynamic Aspects as Observers

Vaidas Gasiunas, Mira Mezini, Klaus Ostermann, Ivica Aracic
Software Technology Group

Darmstadt University of Technology, Germany

{gasiunas, mezini, ostermann, aracic}@informatik.tu-darmstadt.de

ABSTRACT
Modularization of software is driven by the principle of sep-
aration of concerns, which often does not correspond to the
direction of calls between modules. Therefore observation
techniques play important role for avoiding cyclic dependen-
cies between modules. Object-oriented observation mecha-
nisms require too much design and implementation effort
and still do not provide good modularity properties. These
problems are solved by aspect-oriented languages, which
enable clean separation of component observation concern
from its main functionality. The paper demonstrates how
the static aspect-oriented solution can be improved further
using flexible aspect instantiation and deployment, which is
provided by CaesarJ. The presented techniques remove the
gap between pointcuts and observer objects, enable observa-
tion of remote objects and flexible control over observation
scope.

1. INTRODUCTION
In properly modularized systems dependencies between mod-
ules are acyclic, because cyclic dependencies bring a lot of
disadvantages [17]. If modules stand in a cyclic dependency,
none of these modules can be understood in isolation, none
of them can be reused without the other. A change in one
of the modules can potentially destabilize all the other. It
is not possible to distribute and deploy them in separation.
Having in mind all these disadvantages of cyclic dependen-
cies, it is not a surprise why software design is so much
about breaking them. In the further discussion if module A
depends on module B, we will call B as a component and A
as its client.

In traditional programming languages, dependencies between
modules are determined by the direction of routine calls.
However, possibility to modularize systems exclusively in
the direction of the control flow of the program is too limited,
because there are other criteria for modularization, which of-
ten crosscut the control flow. There is a need to have a call,
which direction opposite to a dependency between modules,

i.e. call from component to client. Such calls are known as
callbacks. Procedural languages realized them directly by
callback routines.

Object-oriented programming languages achieve a similar
effect by means of interfaces and inheritance. The compo-
nent accepts certain interface and client implements it by a
specific class. In such solution callback routines are methods
of objects. This gives certain advantages. Firstly interfaces
can define a group of callback types, and therefore it is easier
to manage them as each callback type separately. Secondly,
callback routines most often need some specific data from
client side: parameters and references to relevant client ob-
jects, however they run in a static context and can collect
only information from global variables. In object-orientation
callback routines always run it a context of object, which
provide them with necessary client specific data. Such solu-
tion is easier to manage and also type safe.

Nevertheless, all object-oriented callback patterns, such as
Observer, Command [8], Events [2] and other Publisher-
Subscriber interactions [7] still require special preparations
for callbacks on the component side. Only aspect-oriented
languages make software modularization completely inde-
pendent from the call directions and enable clean separation
of components from their observation concern. However, in
order to replace object-oriented patterns, aspects must be
more flexible. They must be more tightly related with other
application objects. It must be possible to control their life-
cycle and application scope at runtime.

The contibution of the paper is twofold. Firstly, it ex-
plains how dynamic aspects could be applied to solve ob-
servation problems in a better way than using traditional
object-oriented approaches or static aspects. Secondly, the
paper presents the flexible aspect deployment mechanism
in CaesarJ, which enables application of aspects on various
dynamic scopes ranging from individual objects to remote
processes as well as provides possibility to control this scope
at runtime.

The paper is organized as following. Sec. 2 outlines the prob-
lems with object-oriented observation patterns. In Sec. 3 we
explain how AspectJ[14] aspects solve the stated problems.
Sec. 4 shows how dynamic aspect features in CaesarJ can
further improve the AspectJ solution by removing the gap
between pointcuts and observers, enabling observation of
remote objects and flexible control over observation scope.

Sec. 5 explains implementation of aspect support in Cae-
sarJ. Sec. 6 discusses related work and and Sec. 7 gives a
summary.

2. OBSERVATION PROBLEMS
Since component functionality does not depend on the func-
tionality of its clients, usually components are designed and
implemented before their concrete clients are known. It is
also often the case that new clients appear during system
evolution. In object-oriented applications we have to build-
in the notification mechanisms in advance, if we do not want
to change our component with emergence of new clients.

To implement a notification mechanism we have to design
event types, observer interfaces, implement their registra-
tion mechanism. At all places were event occurs we have to
notify all registered observers, collect information about the
event and pass it to observers. As we can see such kind of
functionality requires a significant implementation effort.

In order to reduce implementation effort and complexity
overhead, we try to foresee what kind of component state
changes and other types of events can be of interest to its
potential clients. Even more difficult is to decide what kind
of information about the event is required. In case of data
observation, designer must balance between the tradeoffs of
”push” and ”pull” models [8]: between the efficiency and the
simplicity of the notification mechanism and the efficiency
of the observer update implementation. However it is very
difficult to reason about the influence of one or another de-
sign decision on the efficiency of observers, without knowing
the concrete observers.

Need for notification is often client specific. Therefore, if we
somehow manage to define notification mechanism, which
fulfills the needs of all potential clients, most probably it
will be too complicated for individual clients. They will get
notifications about events in which they are not actually
interested in. They will receive extensive information about
an event, but use only a small part of it or won’t use it
at all. It also can be that some of the events, which we
considered as useful when designing our component will be
not interesting for clients at all.

After several development iterations, numerous refactorings
we will probably find a balanced notification mechanism for
the component. We will have a lot of types of events, ob-
server interfaces; the component will be full of notification
code, the purpose of which won’t be possible to understand
without knowing the specific needs of its clients. The notifi-
cations will be tangled within the main component function-
ality. Notification functionality is often crosscutting. The
same types of events happen at several places of the com-
ponent. So we will have to repeat notification code and it
will be difficult to locate all notifications of a certain type
of event.

2.1 Example
For illustration of observation problems, let’s consider a sim-
plified version of a project management system (PMS). The
core model (Fig. 1) of the system defines a project as a set
of tasks, assigned to certain users. Some of the tasks would

be related to output documents. There are various relations
between tasks and various user roles in projects.

duration
status
progress
description

Task

deadline
customer
type

Project

name
email

User

tasks

assignedTo

team

precedes

manager

subtasks Documentoutput

Figure 1: Project Model

The component, implemeting the project model, will be used
for a lot of other functionality of the PMS (Fig. 1), such as
for example, project tracking, resource management, report-
ing, billing, and so on. Concrete project management needs
and practices vary from company to company, from project
to project, therefore the project model component should
be kept completely independent of its clients.

Project Model

Resource
Management

Project Tracking

Metric
Collection

Billing

Management
Policies

Views & Reports

Figure 2: Sample Clients of Project Model

As we don’t want to make any assumptions about project
model clients, we may decide to implement as rich an ob-
servation mechanism as possible. So we define observer in-
terfaces for each class in the model (List. 1) and include
methods for all kind of events. Then we also need to im-
plement observer registration and notification in the model
classes.

interface TaskListener {
void taskDurationChanged(Task t,

double oldDur, double newDur);
void taskProgressChanged(Task t,

double oldPr, double newPr);
void taskStateChanged(Task t, int oldSt, int newSt);
void taskOutputChanged(Task t,

Document oldDoc, Document newDoc);
...

}
interface ProjectListener {

void taskAdded(Project p, Task t);

void taskRemoved(Project p, Task t);
void projManagerChanged(Project p,

User oldMgr, User newMgr);
...

}
...

Listing 1: Interfaces for Observing Project Model

Despite of all this effort, the observation system will be far
from ideal. For example, project tracking classes (List. 2)
will only be interested in the schedule and task progress
changes. Nevertheless it will receive all events, defined in
the observer interfaces.

class CriticalChainTracking
implements TaskListener, ProjectListener {
double usedBuffer;
Task chainTasks[];
void taskProgressChanged(Task t,

double oldPr, double newPr) {
if (taskInChain(t)) {

usedBuffer += oldPr − newPr;
}

}
void taskOutputChanged(Task t,

Document oldDoc, Document newDoc) {
/* not interested in the event */

}
void taskAdded(Project p, Task t) {

recalculateChain(t);
t . registerListener (this);

}
...

}

Listing 2: Tracking Critical Chain

A view, displaying project tasks (List. 3) may be interested
in most of changes in the project and its tasks, but it does
not need to distinguish between different types of changes,
because it reacts to them in the same way. The rich observer
interfaces are just unnecessary complexity for this client.

class ProjTasksView extends TableView
implements TaskListener, ProjectListener {
Project proj;
void taskProgressChanged(Task t,

double oldPr, double newPr) {
repaint ();

}
void taskOutputChanged(Task t,

Document oldDoc, Document newDoc) {
repaint ();

}
void taskAdded(Project p, Task t) {

repaint ();
t . registerListener (this);

}
...

}

Listing 3: Project Tasks View

3. OBSERVING WITH STATIC ASPECTS
Aspects give a fundamentally new freedom for modularizing
our systems by providing powerful mechanism to implement
backward links from component to client. The advanced
pointcut languages can intercept almost all points in the
control flow of the component, at which the events of in-
terest can occur. They also allow to collect various kind of

information about the event: the affected object, its state,
method parameter values and even some meta-information.

An important advantage is that all this can be done outside
the component. This lets us to change the way how we
design interaction between a component and its clients. It
is not anymore the responsibility of the model to notify all
its clients, but the responsibility of a client to collect all the
events it needs. This gives a major advantage with respect
to our stated problems.

For example, we would define separate aspects for different
kinds of observation of project model. An aspect for Pro-
jectTaskView update (List. 4) will observe all events about
project and task changes. The aspect for critical chain track-
ing (List. 5) will observe only the changes in project schedule
and task progress.

aspect ProjTasksViewUpdate { ...
pointcut taskChanged(Tasks task) :

execution(void Task+.set∗(..)) && this(task);

after(Task task) : taskChanged(task) {
updateAllViews(task.getProject());

}

pointcut projectChanged(Project proj) :
execution(void Project+.set∗(..)) &&
execution(void Project+.add∗(..)) &&
execution(void Project+.remove∗(..)) &&
this(proj);

after(Project proj) : projectChanged(proj) {
updateAllViews(proj);

}
}

Listing 4: Project Tasks View Update with AspectJ

aspect CriticalChainTracking { ...
pointcut progressChanging(Task task, int newPrg) :

execution(void Task+.setProgress(int)) &&
this(task) && args(newPrg);

before(Task task, int newPrg) :
progressChanging(task, newPrg) {
updateChainBuffers(task.getProject(), task, newPrg);

}

pointcut scheduleChanged(Project proj) :
execution(void Project+.addTask(..)) &&
execution(void Project+.removeTask(..)) &&
this(proj);

after(Project proj) : scheduleChanged(proj) {
recalculateChains(proj);

}
}

Listing 5: Tracking Crical Chain with AspectJ

The possibility to add new ways of observation later on
solves the preplanning problem. We can develop the com-
ponent without thinking about the ways it can be observed.
We don’t need to decide what kind of state changes and
method calls are of interest to its clients, what kind of ad-
ditional information about the events should be supplied.
Components are always open for observation with aspects,
and the aspects can collect the information of interest them-
selves. We also avoid unnecessary implementation effort.
The observation code is added only when it is really needed.

Aspects enable defining client specific ways of observation.
We can define as many ways to observe the same model as
we need without changing a single line the model implemen-
tation. Each client can intercept only the events, which it
really needs, and collect only the relevant information. It
is completely unaware of the ways other clients observe the
component.

With aspects we can achieve better modularization. The
component module needs to implement only the functional-
ity, which is conceptually inherent to the component, and
does not need contain any client specific code. Then we
don’t need to know about the clients of the component in
order to understand it. The way a client observes a com-
ponent is rather a part of the client’s logic; therefore, we
increase logical cohesiveness by including the implementa-
tion of observation to the client module. If we remove the
client, its observation logic is also removed, because it does
not serve any purpose to the component or to other clients
of it.

Pointcut languages can also express the notification more
concisely. Instead of inserting the same notification func-
tionality in all places where an event occurs, a pointcut can
specify all these places by a single expression and the corre-
sponding advice would implement the notification function-
ality for this in one place.

4. OBSERVING WITH DYNAMIC ASPECTS
4.1 Gap between Pointcuts and Observers
The problem of aspects in AspectJ[15] is that they cannot be
flexibly instantiated and therefore cannot be used instead of
observer objects. For example, an observer implementing a
view may be created, when user clicks on a certain toolbar
button, and closed, when user clicks on the close button
of the view. In a lot of situations we may need to create
multiple instances of the same type of a view. We may
need that these instances exist at the same time and observe
the same events. Possibilities to control the lifecycle of the
aspect instances in AspectJ is too limited for this example.

AspectJ aspects cannot be instantiated explicitly using new()
keyword. By default all aspects are singletons and contain
one instance, which exists all the time. Additionally, per
control flow aspect instantation in AspectJ provides possi-
bility to have different instances of the aspect in different
joinpoints of the control flow. There are also two per object
aspect instantiation methods: either per this or per target
objects of the joinpoints of a certain pointcut.

All these instantiation methods are not sufficient. Single-
ton aspects do not support multiple instances at all. Per
control flow aspect does not support existance of multiple
instances at the same time. Per object instantiation method
is the most flexible, because it lets to relate the lifecycle of
an instance of the aspect with a certain object of a class.
However, such aspect instance can intercept only the join-
points of that object. For example, if we instantiate aspect
per each view object, it can intercept only the joinpoints of
the view, but not the joinpoints of the model, which it needs
to observe.

It means that aspect instances cannot be the final observers,

and an infrastructural code must be written to link aspect
instances with the observer instances and delegate them
the notifications about the intercepted events. For exam-
ple, method updateAllViews in List. 4, must ensure that
messages are further delegated to views, which observe the
project, where the change happened. Therefore the aspect
must contain knowledge about views that observe a certain
project. The same problem is relevant to project tracking as-
pect of List. 5. The aspect must contain information about
the critical chains of all projects, which use this tracking
method. It means, that the aspects must contain registra-
tion mechanism for the final observers, and delegate notifi-
cations to them as for example in List. 6.

aspect ProjTasksViewUpdate { ...
HashMap projTaskViews;
void registerView(Project proj, ProjTasksView view) {

List views = (List)projTaskViews.get(proj);
if (views == null) {

views = new LinkedList();
projTaskViews.put(s, views);

}
views.add(view);

}
void unregisterView(Project proj, ProjTasksView view) {

/* ... */
}
void updateAllViews(Project proj) {

List views = (List)projTaskViews.get(proj);
if (views != null) {

Iterator iter = views.iterator ();
while (iter .hasNext()) {

((ProjTasksView)iter.next()).repaint ();
}

}
}

Listing 6: Notifying Observers in AspectJ

The proposed reusable Observer pattern implementations
with AspectJ [10, 19] cover only a specific case, when all
events are handled uniformly and no context information
from joinpoints is required to the observer objects. For ex-
ample it is not the case for critical chain tracking, where are
at least two types of events, which are handled differently.

4.2 Aspect Objects
The problem of mismatch between pointcuts and observers
is solved in Caesar by unifying aspects and classes. Point-
cuts and pieces of advice can be included to any class decla-
ration. Aspects in this case are simply objects, which have
pointcuts and advice. Considering aspects as objects has
several implications. First of all, such aspects can be freely
instantiated at any time in the application. There can be
multiple instances of the same aspect type with different
runtime state. Secondly, the pointcuts and advice are owned
by objects. They operate in the context of their owner ob-
ject, so they can access its state and call its methods.

Objects, supplied with pointcuts and advice, can themselves
define the necessary observation. For example, we can im-
plement the update of ProjTaskView by supplying it with
corresponding pointcuts and pieces of advice (List. 7).

cclass ProjTasksView extends TableView { ...
Project proj;

pointcut taskChanged(Tasks task) :
execution(void Task+.set∗(..)) && this(task);

after(Task task) : taskChanged(task) {
if (this.proj == task.getProject()) {

repaint ();
}

}

pointcut projectChanged(Project proj) :
execution(void Project+.set∗(..)) &&
execution(void Project+.add∗(..)) &&
execution(void Project+.remove∗(..)) &&
this(proj);

after(Project proj) : projectChanged(proj) {
if (this.proj == proj) {

repaint ();
}

}
}

Listing 7: Project Tasks View in Caesar

In this way, we remove the gap between the pointcuts, defin-
ing observation, and the actual observer objects. The point-
cuts immediately trigger the advices of the object. The ad-
vices can additionally check the relevance of the event using
dynamic state of the object and immediately execute appro-
priate functionality to react to the event. Such solution pre-
serves the encapsulation, because pointcut and advice being
a part of the object can safely access its internal state. Point-
cuts and advice can be viewed as implementation details of
an object, used to observe other objects, processes and sys-
tems. The observation logic is encapsulated. A client can
create an object and use it without knowledge of the struc-
ture which it observes. The client is freed from the duty to
register the object to the appropriate notification services
or to pass everything what the object needs from the con-
text. The object can use pointcuts and advice to collect all
context information it needs.

4.3 Aspect Deployment
Differently from AspectJ[14] aspects, Caesar aspect objects
must be deployed to activate their pointcuts and updeployed
to deactivate them. In this way, we get flexible control over
aspects. Aspects are instantiated and deployed only when
they are needed, and undeployed when they are not needed
anymore. The same aspect object can be deployed and un-
deployed several times, so its state is preserved between dif-
ferent periods of activation. For example, in List. 8, when a
view is created, it activates its pointcuts. When a user hides
the view, the pointcuts are deactivated, while the object still
exists. When the user decides to switch on the view again,
its pointcuts can be again activated.

cclass ProjTasksView extends TableView { ...
void init() { ...

DeploySupport.deployLocal(this);
}
void hide() { ...

DeploySupport.undeployLocal(this);
}
void show() { ...

DeploySupport.deployLocal(this);
}
void close() { ...

DeploySupport.undeployLocal(this);
}

}

Listing 8: Deploying Aspect Objects

It may seem that in a lot of cases, it would be more conve-
nient when aspects are implicitly deployed when the aspect
instance is created and updeployed when it is not referenced
anymore. However it is not sufficient, because an aspect ob-
ject should not be destroyed when it is not referenced. It
can be still reachable through a pointcut. There are aspects
that just observe certain events and react to them. There-
fore, it is necessary to stop this observation explicitly by
undeploying such aspects.

4.4 Remote Deployment
In multithreaded and distributed applications, the scope of
the aspect activation cannot be fully determined by the
points in the control flow where aspect is deployed and un-
deployed. Certain aspects may need to observe only the
events in a single thread. For exampleb a progress bar or a
trace may need to observe only a single process running on
a certain thread. Other aspects may need to observe events
on all threads. For example, a view must be updated after
any change in the model, independent of thread that caused
it. Therefore, Caesar provides different aspect deployment
strategies. An aspect object can be deployed on the current
thread, on the entire JVM process, on a remote process or
on a synchronous control flow, which crosses process bound-
aries.

The project management system normaly runs in a distrib-
uted multiuser environment. The project model will reside
on an application server, while various views and notifica-
tions will operate on the client machines. In such a case,
local aspect deployment, as shown in List. 8 is not appro-
priate. Project task view must be instead depoyed on the
remote process, where the project model objects are cre-
ated. At first, we must enable aspect deployment in the
server process using the RMI address, which identifies the
server as shown in List. 9. In this way ,we instruct to create
and publish the object, which accepts aspect deployment re-
quests. Then, on the client side we use the same RMI adress
to deploy aspect objects on the remote server (List. 10).

cclass ProjectServer {
static void main(String args[]) {

...
CaesarHost host = new CaesarHost(

”rmi://mycompany.net/projectserver/”);
host.activateAspectDeployment();
/* create and publish remote objects */
ProjectList projList = loadProjectList();
host.publish(projList , ”ProjectList”);
...

}
...

}

Listing 9: Enabling Aspect Deployment on a Server

cclass ProjectClient {
static CaesarHost host = new CaesarHost(

”rmi://mycompany.net/projectserver/”);
static CaesarHost getHost() {

return host;
}
...

}

cclass ProjTasksView extends TableView { ...
void init() { ...

ProjectClient.getHost().deployAspect(this);
}

void hide() { ...
ProjectClient.getHost().undeployAspect(this);

}
...

}

Listing 10: Deploying Project Tasks View on Re-
mote Host

Remote aspect deployment in Caesar is running over Java
RMI. RMI uses generated stub classes for transparent com-
munication with remote objects. We have developed a spe-
cialized RMI compiler, which generates stubs for Caesar
classes. Classes, which are used or deployed remotely must
be prepared by this tool. Differently from standard Java
RMI, the Caesar RMI compiler does not require specially
prepared remote interfaces. The stub can be generated for
any Caesar class. This makes remoting in Caesar more
transparent and easier to use.

4.5 Controlling Observation Scope
Standard aspect deployment strategies can limit the scope
of observation to certain hosts or threads. These scopes
are well suited to implement non-functional requirements or
to trace certain processes, but they are too broad for most
common observer aspects. For example, classical object-
oriented observers register to individual subject objects. For
example, the project task view in List. 3 registers to one
project and all its tasks. On the contrary, the static aspect-
oriented solution intercepts joinpoints in all project and task
objects and only the advice filters out the relevant events.

In fact, the project task view as well as other project ob-
servers are only interested in changes in only one project.
Therefore, we must limit observation scope to one project
and its dependent objects. The observation scope can be
limited by defining a custom deployment strategy. The Cae-
sarJ runtime library provides a predefined class PerObject-
Deployer, which implements object-based scoping. The class
implements aspect deployment on objects, which identify
the scope. The subclasses of this class need only to de-
termine concrete object scopes by calling setScopeObject()
method when the scope changes. For example, project scope
could be implemented by a class in List. 11. The class inter-
cepts all jointpoints on projects and their dependent objects
and marks the currently active project.

public cclass PerProjectDeployer extends PerObjectDeployer {
before(Project proj): execution(∗ Project.∗(..)) && this(proj) {

setScopeObject(proj);
}
before(Task task): execution(∗ Task.∗(..)) && this(task) {

setScopeObject(task.getProject());
}
private static PerProjectDeployer singleton = null;
public static PerProjectDeployer instance() {

if (singleton == null) {
singleton = new PerProjectDeployer();
DeploySupport.deployLocal(singleton);

}
return singleton;

}
}

Listing 11: Per Project Deployment Strategy

We can use the singleton instance of PerObjectDeployer to

deploy it on the projects, created in the local JVM process.
However, views run on the client side and needs to be de-
ployed on remote project objects. We can achieve this by
publishing the PerProjectDeployer instance for remote ac-
cess and use it on the client side. Listing 12 demonstrates
deployment of ProjTasksView on a remote project object.

cclass ProjectServer {
static void main(String args[]) {

...
CaesarHost host = new CaesarHost(

”rmi://mycompany.net/projectserver/”);
...
host.publish(PerProjectDeployer.instance(),

”PerProjectDeployer”);
...

}
...

}

cclass ProjectClient {
static CaesarHost host = new CaesarHost(

”rmi://mycompany.net/projectserver/”);
static PerProjectDeployer getPerProjectDeployer() {

return (PerProjectDeployer)host
. resolve(”PerProjectDeployer”’);

}
...

}

cclass ProjTasksView extends TableView { ...
Project proj;
void init() { ...

ProjectClient.getPerProjectDeployer()
.deployAspect(this, proj);

}
void hide() { ...

ProjectClient.getPerProjectDeployer()
.undeployAspect(this, proj);

}
...

}

Listing 12: Deploying on Remote Project

Such specialized deployment strategies have two advantages.
Firstly, they provide a more efficient solution, because the
observation scope of aspect object is limited to only relevant
joinpoints. This is especially important for distributed ap-
plications, where each advice activation causes a remote call.
In our example, the reduction of remote calls is proportional
to the number of projects in the system.

cclass ProjTasksView extends TableView { ...
pointcut dataChanged() :

execution(void Project+.set∗(..)) &&
execution(void Project+.add∗(..)) &&
execution(void Project+.remove∗(..)) &&
execution(void Task+.set∗(..));

after() : dataChanged() {
repaint ();

}
}

Listing 13: Simplified Project Tasks View

The second advantage is that custom deployment strategies
reduce the complexity of aspect classes, because they don’t
need to filter out the relevant events anymore. For exam-
ple, the observation in ProjTasksView is reduced to a single
joinpoint and a trivial advice (List. 13). The deployment
strategy class is reusable and can be used for deployment of

any other aspect objects, which require observation in the
scope of a single project.

5. IMPLEMENTATION
Aspectual objects and flexible aspect deployment are fea-
tures of CaesarJ programming language, which also imple-
ments virtual classes [16] and family polymorphism [6]. All
these features together enable integration of reusable com-
ponents into existing applications [18] and flexible variability
management [20].

CaesarJ supports AspectJ[14] style pointcuts and advice.
They are woven statically at compile time using AspectJ
weaver. Aspect deployment framework is built on top of
static aspects. For each Caesar class, containing pointcuts
and advice, a registry class is generated, which is actually a
conventional AspectJ aspect. The pointcuts from the Cae-
sar class are moved to the registry class, while the advices
are transformed to simple class methods. The registry class
also provides methods for registration of the corresponding
Caesar class objects.

Since registry classes are AspectJ aspects, we use AspectJ
weaver to weave them into application code. So the join-
points of the woven code contains calls to the advices of the
registry classes. The advices of a registry class on their turn
delegate the call to the registered aspect objects. In this
way an advice call can be distributed to any number of ob-
jects. For more detailed information about implementation
of aspect registries refer to [9].

Implementation of aspect deployment strategies is based on
manipulations with aspect registration. Each type of de-
ployment defines a special collection class that determines,
which of the deployed objects must receive advice call in
the current execution context. Simple deployment strategy
notifies all deployed objects, while thread based deployment
strategy notifies only the objects, which are deployed on
the current thread. Each deployment strategy also define a
deployer class, which instantiate the appropriate collection
and sets up it in a registry class, when an aspect is deployed
using this deployment method. There is also a special collec-
tion class which can aggregate over other collections and in
this way enables simultaneous usage of multiple deployment
strategies for the same aspect class.

All deployment strategies are defined outside Caesar com-
piler in the runtime library. The compiler is only responsi-
ble for generation of the registry classes and class methods,
which ensure that an aspect object is also deployed to the
registries of its superclasses. The classes in the runtime li-
braries can be further extended for new types of deployment
strategies. In List. 11 we have seen how custom per-object
deployment strategies can be defined.

The current implementation provides moderate performance
characteristics. Weaver inserts advice calls only at join-
points, which are referenced by the aspects in the appli-
cation. If no aspect is deployed at a joinpoint, this causes
one redundant static method call and one field check for
the null value. The collections of aspect deployment strate-
gies use hash tables to determine the aspect objects, which
must be notified at the joinpoint. In this way unnecessary

iterations are avoided. We believe that dynamic aspect de-
ployment can be implemented even more efficiently using
run-time weaving techniques [3].

6. RELATED WORK
A reusable Observer design pattern implementation is pro-
vided by Event library [2], which is based on Eiffel agents
[5]. The library reduces implementation effort of registra-
tion and notification infrastructure. However other prob-
lems remain, for example the library still requires preplan-
ning of event types and event triggering code is still tangled
in the component implementation. New event types cannot
be added without modifying the component class.

In [10] Hanneman and Kiczales propose reusable implemen-
tation of Observer design pattern with AspectJ. The imple-
mentation enables clean separation of observation concern
from the observable subject. The problems with this so-
lution are analized in [19]. The paper also presents a more
reusable and conceptually clean solution of the Observer de-
sign pattern using Caesar. The proposed solution also al-
lows multiple instantiation of Observer pattern on the same
classes for different kinds of observation. The reusable im-
plementations of Observer consider only the classical variant
of the pattern, where an observer is interested a monolithic
subject object, does not distinguish between different types
of changes and does not require more information about the
change.

Previous work on Caesar also identified the need of dynamic
aspect deployment to enable variation of aspect functional-
ity, depending on run-time settings [19] or the owner ob-
ject [20]. Early implementations of Caesar [9] were limited
to thread based deployment of aspects. More complicated
deployment was implemented by special static aspects, re-
sponsible for deployment of other aspects, as demonstrated
in [20]. A similar design pattern is also used for activation of
call-ins in Object Teams [11]. However, custom deployment
strategies is a better solution, because these strategies are
more compact and reusable, the deployment scope is defined
independently from concrete aspects.

Remote pointcuts introduced in DJcutter [21] allow defini-
tion of aspects, which refer to joinpoints on remote processes.
All aspects run on a special aspect server and intercept join-
points in all or some of the registered hosts. The solution is
similar to remote aspect deployment in Caesar and provides
more rich implementation of crosscutting features, such as
cflow cross process boundaries or remote intertype declara-
tions. DJcutter also employs load-time weaving. Load-time
weaving enables deployment on hosts, which are unaware of
aspects. Hovewer, DJcutter is not suitable for implementa-
tion of observer aspects, because aspects are singletons and
they are running in one process and cannot be dynamically
controlled.

CaesarJ and most of dynamic aspect activation approaches,
such as AOP[4], JAC[22], PROSE[23], JBoss AOP[13] and
AspectWerkz[1], require one or another form pre-runtime
class preparation for weaving. The classes are either pre-
pared at compile time, load time or just-in-time compilation.
There are two possibilities for pre-runtime class preparation:
either to insert hooks at all join points of a loaded class or

to limit to a fixed set of known join points. While the first
option causes significant performance overhead, the second
option (also used in Caesar) assumes initial knowledge about
aspects, which will be activated. Load time weaving is better
than compile time weaving, because it enables independent
distribution and deployment of different software packages.

Dynamic aspect deployment can be more efficiently imple-
mented on the systems supporting real run-time weaving,
such as Steamloom [3] and AspectS [12]. Only the Steam-
loom is flexible enough for the needs of aspect deployment
in CaesarJ, because it supports thread local aspects as well
as aspect deployment on individual objects.

7. SUMMARY
In this paper we explained how aspects can provide clean
separation between components and their observers. Aspect-
oriented solution also frees us from preplanning problem and
supports various ways to observe the same component. The
aspect objects, introduced by Caesar, remove the gap be-
tween pointcuts and stateful observer objects. Treating as-
pects as objects also enable flexible control over their lifecy-
cle and their remote usage. Flexible deployment strategies
can also solve the observation scope problem. The paper
demonstrate that dynamic aspects can be used not only for
implementation of global crosscutting concerns, but also can
be used to improve object-oriented solutions for functional-
ity on various dynamic scope, ranging from individual ob-
jects to hosts in distributed systems.

8. REFERENCES
[1] Aspectwerkz home page.

http://aspectwerkz.codehaus.org/.

[2] V. Arslan, P. Nienaltowski, and K. Arnout. Event
library: an object-oriented library for event-driven
design. In Proceedings of Joint Modular Languages
Conference’03, 2003.

[3] C. Bockisch, M. Haupt, M. Mezini, and
K. Ostermann. Virtual machine support for dynamic
join points. In Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 83–92. ACM Press, 2004.

[4] R. Douence and M. Sudholt. A model and a tool for
event-based aspect-oriented programming. Technical
Report Technical Report 02/11/INFO, Ecole des
Mines de Nantes, 2002.

[5] P. Dubois, M. Howard, B. Meyer, M. Schweitzer, , and
E. Stapf. From calls to agents. Journal of
Object-Oriented Programming, 12(6), June 1999.

[6] E. Ernst. Family polymorphism. In J. L. Knudsen,
editor, Proceedings ECOOP 2001, LNCS 2072, pages
303–326, Heidelberg, Germany, 2001. Springer-Verlag.

[7] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. Dynamic component adaptation. Technical
Report Technical Report 200104, EPFL, 2001.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison-Wesley, 1995.

[9] J. Hallpap. Towards caesar: Dynamic deployment and
aspectual polymorphism. Master’s thesis, Department
of Computer Science, Darmstadt University of
Technology, 2003.

[10] J. Hannemann and G. Kiczales. Design pattern
implementation in java and aspectj. In Proceedings of
the 17th ACM SIGPLAN conference on OOPSLA,
pages 161–173. ACM Press, 2002.

[11] S. Herrmann. Object teams: Improving modularity for
crosscutting collaborations. In Proceedings of
Net.ObjectDays, Erfurt, Germany, 2002.

[12] R. Hirschfeld. Aspects - aspect-oriented programming
with squeak. In NODe ’02: Revised Papers from the
International Conference NetObjectDays on Objects,
Components, Architectures, Services, and Applications
for a Networked World, pages 216–232.
Springer-Verlag, 2003.

[13] JBoss Inc. JBoss aop beta3. http://www.jboss.org,
2004.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of ECOOP ’01, 2001.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
In Proceedings of the 15th European Conference on
Object-Oriented Programming, pages 327–355.
Springer, 2001.

[16] O. L. Madsen and B. Mller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA ’89. ACM
SIGPLAN Notices 24(10), pages 397–406, 1989.

[17] R. C. Martin. Granularity. C++ Report, 8(11), 1996.
www.objectmentor.com/publications/granularity.pdf.

[18] M. Mezini and K. Ostermann. Integrating
independent components with on-demand
remodularization. In Proceedings OOPSLA ’02, ACM
SIGPLAN Notices 37(11), pages 52–67, 2002.

[19] M. Mezini and K. Ostermann. Conquering aspects
with caesar. In Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development
(AOSD), pages 90–99. ACM Press, 2003.

[20] M. Mezini and K. Ostermann. Variability
management with feature-oriented programming and
aspects. In Foundations of Software Engineering
(FSE-12), ACM SIGSOFT, 2004.

[21] M. Nishizawa, S. Chiba, and M. Tatsubori. Remote
pointcut: a language construct for distributed aop. In
AOSD ’04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 7–15. ACM Press, 2004.

[22] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
Jac: A flexible solution for aspect-oriented
programming in java. In Proceedings of the third
International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, pages 1–24.
Springer, 2001.

[23] A. Popovici, G. Alonso, and T. Gross. Just-in-time
aspects: efficient dynamic weaving for java. In AOSD
’03: Proceedings of the 2nd international conference
on Aspect-oriented software development, pages
100–109. ACM Press, 2003.

